

-1-

The Four-Fold Path
Elimination of Pointer-Sorrow of Womankind

12th October 2004
Sathyaish Chakravarthy

This article applies to the C programming language. It presents a case where a
pointer to a pointer to a character array is to be preferred over an ordinary
character pointer, by highlighting the shortcomings of using an ordinary pointer
in such a case.

Introduction

Often times, we need to pass a character array to a function in order that the called
function works on the string, modifies it and returns it to the called function. The
most common way of doing it is by using a character pointer. For the sake of
demonstration, let us create a similar scenario by writing the code for two
functions, one of which will call the other by supplying a character pointer as an
argument, and will expect the called function to modify the contents of the
character array pointed to by the argument. Have a look at the following snippet.

Code Listing 1
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define MAX_LEN 20
int ChangeString(char *);

int main(void)
{

 //Declare a character pointer
 char *Str;

-2-

 //Allocate memory to the character pointer
 Str=malloc(sizeof(char)*(MAX_LEN+1));

 //Write some text into the memory, and print it out
 strcpy(Str, "Money comes and goes.");
 printf("Original String: %s\n", Str);

 /*Modify the contents of the string by calling ChangeString() supplying Str
as an argument, and then print the changed Str out*/
 ChangeString(Str);
 printf("Modified String: %s\n", Str);

 return 0;
}

int ChangeString(char *TheString)
{
 /*Do something to change the contents of
 the string, so that TheString now becomes “Morality comes and grows
 Pseudocode:*/
 if (error) return –1;
 TheString=”Morality comes and grows.” //Pseudocode
 return 0;
}

What happens in the above-snippet is pretty simple. The main() function declares a
character pointer called Str, to which it allocates some amount of memory by
calling the malloc() function. At first, it writes the contents, ”Money comes and
goes” into the string. Then it calls the ChangeString() function, which is supposed
to change the contents of the string to “Morality comes and grows”. Finally, the
main() function prints out the new contents of the string to the VDU by calling the
printf() function.

The desired output we want from the above function is:

Original String: Money comes and goes.
Modified String: Morality comes and grows.

-3-

You’d have noticed that the implementation of the ChangeString() function
provided above is not correct. Instead, what has been provided is only pseudo-
code. That has been done on purpose because that is the very subject of this article.
We are heading for a discussion of the implementation inside the ChangeString()
function, given an ordinary character pointer argument, and we will do that by
considering a handful of paths, that will finally divulge to us, the shortcomings in
the design of the argument to the ChangeString() function.

An alternative design could of course be letting the ChangeString function return a
character pointer instead of an integer. However, we don’t want to do that since it
is important that we return an error code for success or failure.

A simple case: strcpy

The first and the foremost implementation is a case where we use the strcpy()
function to copy the new contents to the memory pointed to by the character
pointer received as an argument.

Let us revisit the code again for the main() and ChangeString() functions. Only this
time, we will provide an actual implementation of the ChangeString() function, that
works.

The code inside the main function will look exactly the same. So this time, let us
concentrate on the code inside the ChangeString() function only. Look at Code
Listing 2 for the source code.

Code Listing 2
int ChangeString(char *TheString)
{
 /*If the original string itself is not valid,
 there's no way in hell we can over-write its contents,
 so we return an error.*/
 if (TheString==NULL) return -1;

 strcpy(TheString, "Morality comes and grows.");
 return 0;
}

That is so straightforward. I like it. Let us compile this code to see if it works.
And…it works. I swear! See Figure 1 below.

-4-

Figure 1: The strcpy() function worked like a charm!

What did we do here? Remember that the main() function had declared a character
pointer called Str. The Str was given memory by calling the malloc() function. Then
it was written into by the main() function. Subsequently, it was handed over under
the sobriquet TheString, to the function ChangeString(). That was the pedigree of
this call.

Over here, in the ChangeString() function, we called the strcpy() function giving it
the address of the first element of the character array in the memory, and the new
content we wanted written onto that memory. The strcpy() function copied the
contents “Morality comes and grows” into the memory. Both the functions, main()
and ChangeString() were pointing to the same memory. As a result, when the
function returned, the main() function got the modified contents from the same
memory and printed them on the screen. This is how it worked. See Figure 2.

-5-

Figure 2: The memory diagram of Code Listing 2

I wish life too was that simple. But the truth is that I did not tell you the truth. I
told you a white lie. What is a white lie? Well, a white lie is when you say only
something out of the whole thing such that the something looks like a conclusive
truth, whereas you are concealing much of the truth, which is in contradiction to
your conclusion.

The confession I have to make is that I told you a pack of lies because I had to. I
saved you from the nastiness of what lies ahead. This code actually is rife with
danger.

A closer investigation of this code will tell us that we declared the character
pointer in the main() function, and allocated to it only 21 units of memory. The
main() function behaved well and wrote exactly 21 units of memory into the string,
because “Money comes and goes” measures exactly 20 units and 1 unit is taken
up by the null terminator. However, when the function strcpy(), it did not re-
allocate new memory to the string. It blindly wrote on the old string without
bothering about the memory allocated. The string “Morality comes and grows” is
24 units of memory and its null-terminator is 1 unit, thereby adding up to 25 units

-6-

of memory. Instead of reporting an error about insufficient memory, strcpy() so
unthinkingly overwrote unowned memory from the heap.

It did? Yes. Let’s take a look at the documentation of this function strcpy().

char * strcpy (char * dest, const char * src);
dest should have enough memory space allocated to contain src string.

The documentation clearly states that the destination parameter must have
enough memory to hold the contents to be copied. If they do not, however, the
function will not complain. It will continue writing, without a second thought as
to what the previous contents of the memory were, thus causing a buffer over-run.

One question you might have in your mind at this point is how did it display the
two strings correctly then? What was the Figure 1 all about? Did I forge it?

It worked because we were lucky that the memory it infringed upon did not
belong to another variable. But like everyday is not a Sunday, we won’t be lucky
every time.

-7-

Having failed with strcpy(), it is time for some retrospection on that code. Why did
we fail? What intent of that code was culpable?

The answer I got from asking myself this question was, “Son! You failed because
you did not articulate your needs before you expended them.”

“What are my needs, O Noble One?” I inquired.

“strlen(“Morality comes and grows”)+1, my child! Beware of your needs and they
shall come to fruition”, The Voice proclaimed.

“Eureka”, I ejaculated.

“Rejoice!”

With that overwhelming revelation from the Liberated One, I think we are to
celebrate a new perspective. Let us articulate the memory we need before we
expend it.

Second case: Becoming aware of our needs

But if you have programmed for sometime, you would know that it is not always
as easy as said in order to determine at run-time, just how much memory you
need. That is because the strings that we have to write in complex programs are
not given to us just as the string “Morality comes and grows” is given in our
example. In real life programs, we may have to perform some arithmetic on the
state of other variables in order to arrive at our memory requirements. Either
ways, we have to make good guesses about memory requirements. However, in
our simple case, we can go by counting the number of characters in the new string
we want to write, and that is 25. Given that there is a null-terminator too, we need
exactly 26 units of memory.

You might be thinking to yourself, “Tell you what, I know what we’re going to do
now. We’re going to free TheString by calling the free() function on it, then we’re
going to give it 26 new units of memory and finally copy the new string into the
those 26 units. Just like Code Listing 3”.

Code Listing 3
free(TheString);
int Len=strlen("Morality comes and grows");

-8-

TheString=malloc(sizeof(char)*(Len+1));
strcpy(TheString, "Morality comes and grows");
return 0;

You’re nearly right. But we won’t do that.

Would it be nice if we freed the argument, and subsequently malloc() failed on it
and returned NULL? What would happen to TheString then? Wouldn’t it be rude
to destroy even the original contents of the argument if we could not change the
contents? Imagine your father handed you five bucks and asked you to escort
your younger brother to get him a crew cut. To save the five bucks for your own
beer, you tried the haircut on your brother yourself. You got it all wrong, and to
cover it up you had to give his head a clean shave. How would that be?

If we corrupted the original string, we would be doing the clean shave hair cut
instead of what was ordered. So, to be sure we can go on with the hair cut, we
could try our hands with the crew cut on someone else, whose head has the exact
shape of that of your little brother’s head. If it works out, we’ll do it on the kid
brother. If it doesn’t, we’ll have the beer instead.

Thus is ordained the third path - the path of elimination of sorrow. Well, pointer-
sorrow; not the sorry of mankind.

The Third Case: Playing Safe

So, to be nice and polite to the calling function, we will first create new memory
equal to the size of the new string. If the new memory is allocated successfully and
the new contents are copied into the new string, then we could go ahead and
dereference that new memory to the argument received by the ChangeString()
function. That would guarantee to us that the ChangeString() function either:

(1) Was not successful at changing the contents of its argument TheString.

However, it did not destroy the old contents of the argument; or
(2) That the function ChangeString() was successful at modifying the contents of its

argument.

It would not leave us into a situation wherein the function ChangeString() was not
able to modify the contents of it’s argument TheString and it also destroyed the
original contents of the argument TheString such that the argument now points to
an invalid memory location.

-9-

Code Listing 4
int ChangeString(char *TheString)
{
 int Len=0;
 char *NewString;

 /*If the original string itself is not valid,
 there's no way in hell we can over-write its contents,
 so we return an error.*/
 if (TheString==NULL) return -1;

 /*Next, we do just as the Holy One said, we articulate our needs
 before we expend them*/
 Len=strlen("Morality comes and grows.");

 /*We declare a new character pointer, give it the required amount of
 memory and write the new string to it.*/
 NewString=malloc(sizeof(char)*(Len+1));
 strcpy(NewString, "Morality comes and grows.");

 /*Free the reference of TheString to the old memory block,
 and dereference it to the new block of memory just acquired*/
 free(TheString);
 TheString=NewString;

 return 0;
}

But when you compile this code, it does not work. Instead, it gives you a message
like the one shown below in Figure 3.

-10-

Figure 3: The code in Code Listing 4 crashes the program with an error message

like this.

We reasoned out a solution, and we were quite sure it would work, but it didn’t.
Time for some soul-searching yet again. I mean code searching.

But before we open our diagnostic kit, it would be nice if we learnt the mechanics
of memory management in C. What I am refering to is the inner working of the
malloc() and free() functions in C. Once we know what exactly happens inside these
functions, and how these functions affect the state of the pointers in our programs,
it will give us useful insight into spotting the error in our approach.

Let me begin by quoting some of the prominent authorities on software
programming, particularly the C language. The famous book on C, The C
Programming Language, by Brian Kernighan and Denis Ritchie, the creators of
the C language says that malloc() maintains a linked list of memory chunks that are
available for use by our program. Every time malloc() is called with some size, it
walks through the linked list to find the “first fit” of memory that fits the size
demanded, rather than the “best fit”. It starts with lower addresses and walks up
to the higher addresses.

Here’s what Joel Spolsky, a software development guru, who writes a weblog
called Joel On Software has to say about malloc.

Joel says,

“Do you know how malloc works? The nature of malloc is that it has a long
linked list of available blocks of memory called the free chain. When you call
malloc, it walks the linked list looking for a block of memory that is big enough
for your request. Then it cuts that block into two blocks -- one the size you asked
for, the other with the extra bytes, and gives you the block you asked for, and puts

-11-

the leftover block (if any) back into the linked list. When you call free, it adds the
block you freed onto the free chain. Eventually, the free chain gets chopped up into
little pieces and you ask for a big piece and there are no big pieces available the size
you want. So malloc calls a timeout and starts rummaging around the free chain,
sorting things out, and merging adjacent small free blocks into larger blocks. This
takes 3 1/2 days. The end result of all this mess is that the performance
characteristic of malloc is that it's never very fast (it always walks the free chain),
and sometimes, unpredictably, it's shockingly slow while it cleans up. (This is,
incidentally, the same performance characteristic of garbage collected systems,
surprise surprise, so all the claims people make about how garbage collection
imposes a performance penalty are not entirely true, since typical malloc
implementations had the same kind of performance penalty, albeit milder.)”

With that, we are ready to do a post-mortem on the implementation in Code
Listing 4. Let us go back to have a look at what the code in Code Listing 4 did and
why it did not work.

Look at Figure 4 and see the status of the program memory.

Figure 4: The status of the program memory when the ChangeString() function

is called.

-12-

This is how the memory looked like when the ChangeString() function was called.
The memory addresses are, of course, faked in the above diagram. Each function
has a local stack that carries the local variables that are declared inside the
function body.

In the main() function’s local stack, there was a local variable called Str, which was
of the type of a character pointer. When we called malloc() on this pointer, it
allocated 21 units of memory from the heap. The heap is a global area of memory
outside any function, but within a process. All pointers are allocated memory from
the heap. The memory that was allocated to the Str pointer was written onto with
the strcpy() function inside the main() function.

Next, we called the ChangeString() function with the Str pointer passed as an
argument. It is important to note here that although the pointers Str and TheString
point to the same memory, they are different variables in themselves and reside in
the memory independent of each other. The Str variable is local in scope to the
main() function whereas the pointer TheString is local to the ChangeString()
function, and goes out of scope once the control is out of the ChangeString()
function. TheString resides on the local stack of the ChangeString() function.
Consequently, Str has a different memory address than TheString.

In our diagram above, Str has the address 700, whereas the variable TheString has
the address 800. They both point to the same area in the heap, which is at the base
address 100. This is where the string “Money comes and goes” starts.

Hell breaks loose when we call free() on the argument TheString. As noted above,
free reclaims the used memory and adds it up to the linked list called the free chain.
It however does not destroy any content written on that memory.

Figure 5 below shows what the memory of our program looks like immediately
after the call to free() on TheString inside the ChangeString() function.

You can see that both, the pointer Str that is local to the main() function and the
pointer TheString, which is local to the ChangeString() function point to a common
address 100. But because free() has been called on the variable TheString, the
memory pointed to by both these pointers at location 100 in the heap is no longer
valid because it is now a part of the free chain. When another malloc() is called, this
memory may be used to fulfil that memory request.

-13-

Figure 5: The program memory immediately after a call to free() on TheString
arugment inside the ChangeString() function.

However, so far both the pointers Str and TheString still point to the same memory
address, albeit an invalid one. The final blow comes from calling dereferencing
TheString to the memory pointed to by NewString inside the ChangeString()
function. At this point, all ties in between the two pointers Str and TheString that
were to point to the same location are broken. As you would see from Figure 6
below, after the assignment, both TheString and NewString now point to the
location 162, whereas the pointer Str that is local to the main() function still points
to the old, albeit invalid, location 100.

-14-

Figure 6 shows the memory status of the program after this pointer assignment.

Figure 6: The status of the program memory immediately after the pointer
assignment of TheString to the contents of NewString.

-15-

The Fourth Case: Repeating Old Mistakes

In the last approach, we saw that we were nearly there but the call to free() inside
the ChangeString() function spoilt the show because it unlinked the two pointers
Str and TheString.

If you’re still not convinced that the pointers Str and TheString are not the same
even though they were meant to point to the same location, you may try this little
snippet of code to see it for yourself.

Code Listing 5
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int ChangeString(char* TheString);
int main(void)
{
 char* Str=malloc(sizeof(char)*10);
 strcpy(Str, "Hello!");
 printf("Address of Str: %d\nStr points to: %d\nString representation at
that address: %s\n\n", &Str, Str, Str);
 ChangeString(Str);
 printf("%s\n", Str);
 return 0;
}

int ChangeString(char* TheString)
{
 printf("Address of TheString: %d\nTheString points to: %d\nString
representation at that address: %s\n\n", &TheString, TheString, TheString);
 /*We're not changing the string here. This code is just to prove that the two
pointers Str and TheString are indeed different.*/
 return 0;

}

-16-

Another approach that some programmers take it similar to what we discussed in
the previous approach with the only difference that after a call to free() on the
argument TheString, instead of the assignment of the address of NewString to
TheString, new memory is allocated to TheString by calling malloc() on it and then
the new string is copied into TheString argument.

You’d have guessed by now that this approach is also sure to yield the wrong
results because it does not solve the problem we had in the third approach. You
are right. It does not solve that problem. Instead, it helps worsen it. That is because
after the two pointers Str and TheString point to an invalid location because of the
call free() on TheString, they are still pointing to the same invalid location, but
when a call for new memory is made by calling malloc() on TheString, the new
memory is allocated from the free chain, which returns any other address that may
or may not be the same as the old address to which both the pointers pointed.

In the last example, even though the free had been called, and the free chain had
reclaimed the memory at the address 100 in the heap, the contents at that address
were not destroyed. More importantly, the pointers Str and TheString still pointed
to the address 100, which of course was a part of the free chain now. But there’s no
saying till when the contents of that address will remain intact. Probably until
malloc() walks the free chain the next time to find the first fit for it’s next
adventurous assignment.

The misfortune is called upon with the call to malloc()where by TheString gets a
new memory address to point to, and there is no way Str, the local pointer in the
main() function, can point to or even know about this new memory address
allocated to TheString.

Code Listing 6 below demonstrates this fourth approach.

Code Listing 6
int ChangeString(char *TheString)
{
 int Len=0;
 char *NewString;

 /*If the original stirng itself is not valid,
 there's no way in hell we can over-write its contents,
 so we return an error.*/
 if (TheString==NULL) return -1;

-17-

 /*Next, we do just as the Holy One said, we articulate our needs
 before we expend them*/
 Len=strlen("Morality comes and grows.");

 /*We declare a new character pointer, give it the required amount of
 memory and write the new string to it.*/
 NewString=malloc(sizeof(char)*(Len+1));
 strcpy(NewString, "Morality comes and grows.");

 /*Free the reference of TheString to the old memory block*/
 free(TheString);

 /*Allocate new memory to TheString and copy the contents of
 the new string into the new memory of TheString*/
 TheString=malloc(sizeof(char)*(Len+1));
 if(TheString==NULL) return -1;
 strcpy(TheString, NewString);

 //Free the temporary variable NewString
 free(NewString);

 return 0;
}

In order to prove for yourself that malloc assigns a new memory to TheString, of
which Str is oblivious, you can run the source code provided in Code Listing 7
below.

Code Listing 7
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

int ChangeString(char* TheString);
int main(void)
{
 char* Str=malloc(sizeof(char)*10);
 strcpy(Str, "Hello!");
 printf("Address of Str: %d\nStr points to: %d\nString representation at
that address: %s\n\n", &Str, Str, Str);

-18-

 ChangeString(Str);
 printf("%s\n", Str);
 return 0;
}

int ChangeString(char* TheString)
{
 printf("Address of TheString: %d\nTheString points to: %d\nString
representation at that address: %s\n\n", &TheString, TheString, TheString);
 free(TheString);
 TheString=malloc(sizeof(char)*25);
 strcpy(TheString, "Hey, Hello World! How are ya?");
 printf("Address of TheString: %d\nTheString points to: %d\nString
representation at that address: %s\n\n", &TheString, TheString, TheString);
 return 0;

}

When you run the above code listing, you might note an interesting fact about the
memory allocation done by malloc() and the collection of freed memory into the
free chain by free().

To appreciate what’s going on, take a look at Figure 7 below, which shows a
snapshot of the output window on my computer when I ran the code in Code
Listing 7.

-19-

Figure 7: The output of the code in Code Listing 7

The results in the above figure prove that a call to the free() function does not
destroy or overwrite the contents of the memory pointed to by a pointer, but
instead simply reclaims that target memory into the free chain.

Observe that the original contents the memory pointed to by TheString are
“Hello!?” and then the memory is freed and re-allocated to TheString and the new
contents written onto it are “Hey, Hello World! How are ya?”. Note that the old
address that both Str and TheString point to is the same, i.e. 7868080, in my case.
But when the new memory is granted to TheString, the address that TheString
points to is now changed to 7868064, which is exactly 16 bytes before it’s old
address, which is also the address of the memory pointed to by Str. But the length
of the new string is more than 16 bytes, and is 29 bytes. Therefore, that means that
the address 7868080 is now a part of the memory granted to TheString from the
free chain. However, Str still points to this memory and that is why after a return
from the ChangeString() call, when we print the contents pointed to by Str, it
prints, “! How are ya?” which is exactly 16 bytes less than the length of the new
contents of the string pointed to by TheString.

-20-

Nirvana: Pointer to the pointer

We’ve seen four paths and yet we’re back to where we started.

The four-fold approach I have shown you above may be enough to convince you
that an ordinary pointer is not suitable in such a case. As I have made it clear at
the very outset of this writing, another alternative approach is to make the
function ChangeString() return a character pointer instead and be done with it.
However, in cases where an integer value needs to be returned to signal success or
to return specific error information, in such cases, it is not suitable to take a pointer
to a character array as an argument, where such memory pointed to needs to be
changed or re-assigned.

Fortunately for us, the last mistake we made was very insightful. We saw that the
pointers Str in the main() function and the pointer TheString in the ChangeString()
function were independent. And that the new assignment on TheString inside the
ChangeString() or a call to malloc() on TheString broke the link between the two.
Also, the variable TheString was local to ChangeString(), no matter what we did
with it. If we could somehow maintain a link between the two pointers Str and
TheString, we’d obtain to Pointer-Actualization.

The remedy in such a case is to conjure an algorithm that lets you hold on to the
memory pointed to by the calling function; in this case the memory pointed to by
main() function’s Str variable. This can be done if we pass a copy of the actual
address of the pointer Str. In such a case, the called function could retain the
address where Str actually resides and so it would never loose track of the
memory pointed to by Str.

Code Listing 8 below shows the code to achieve the desired affect. The lines of
code that are different from the previous snippet have been typed in bold face.

Code Listing 8
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define MAX_LEN 20
int ChangeString(char **TheString);

int main(void)
{

-21-

 //Declare a character pointer
 char *Str;

 //Allocate memory to the character pointer
 Str=malloc(sizeof(char)*(MAX_LEN+1));

 //Write some text into the memory, and print it out
 strcpy(Str, "Money comes and goes.");
 printf("Original String: %s\n", Str);

 /*Here we pass the address of Str and not a copy of Str*/
 ChangeString(&Str);
 Printf("Modified String: %s\n", Str);

 Return 0;
}

int ChangeString(char **TheString)
{
 int Len=0;
 char *NewString;

 /*If the original stirng itself is not valid,
 there's no way in hell we can over-write its contents,
 so we return an error.*/
 if (*TheString==NULL) return -1;

 /*Next, we do just as the Holy One said, we articulate our needs
 before we expend them*/
 Len=strlen("Morality comes and grows.");

 /*We declare a new character pointer, give it the required amount of
 memory and write the new string to it.*/
 NewString=malloc(sizeof(char)*(Len+1));
 Strcpy(NewString, "Morality comes and grows.");

 /*Free the reference of TheString to the old memory block*/
 free(*TheString);

 /*Allocate new memory to TheString and copy the contents of
 the new string into the new memory of TheString*/

-22-

 TheString=malloc(sizeof(char)(Len+1));
 if(*TheString==NULL) return -1;
 strcpy(*TheString, NewString);

 //Free the temporary variable NewString
 free(NewString);

 return 0;
}

Note that the parameter declaration of the function ChangeString() has now been
changed to a double-pointer. Therefore, the variable TheString now is not a pointer
to a character array. Instead it is intended to hold the address of such a pointer.
Notice that when calling ChangeString() from the main() function, we pass the
address of the variable Str by prefixing the ampersand (&) sign in front of it.

In affect, going by our memory addresses in Figure 6, Str resides at address 400,
TheString at 700, and NewString at 850. However, what they point to has been
changed. Str still points to memory location 100. TheString now points to the
address at which Str resides, which is 400. NewString points to address 162.

When the call to free() on *TheString is made, the memory pointed to by the pointer
whose address is stored in TheString is freed. TheString points to 400, which is the
address at which Str resides. As a result, the memory pointed to by Str is freed.
When malloc() is called on *TheString, the pointer that resides at address TheString
(or 400) is allocated new memory from the heap. Thus, the same pointer Str is
again allocated new memory and retains it.

